首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   5篇
  国内免费   2篇
测绘学   5篇
大气科学   7篇
地球物理   60篇
地质学   20篇
海洋学   62篇
天文学   10篇
综合类   3篇
自然地理   10篇
  2022年   1篇
  2021年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   8篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   7篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有177条查询结果,搜索用时 578 毫秒
91.
Thermally induced upslope flows were observed on several slopes and in valleys, and a simple one-layer model of upslope flow was developed. In this model, the thickness and speed of upslope flow are expressed in terms of sensible heat flux from the slope surface, drag coefficient of the slope surface, slope steepness and stability of the ambient atmosphere. Model results compare favorably with the observations.The development process in the upslope direction of a steady upslope flow was investigated with this model. A steadily developing state in the upslope direction is expressed by the dimensionless equations together with a unique parameter associated with momentum advection. The vertical distance of the slope required for well-developed upslope flow has a minimum value for a moderate slope steepness, but increases monotonously with decreasing ambient stability. The effect of unsteadiness on upslope flow was also investigated. The transient time required to reach a steady state becomes shorter with increasing ambient stability and slope steepness.  相似文献   
92.
Kaoru  Sugihara  Naoto  Masunaga  Kazuhiko  Fujita 《Island Arc》2006,15(4):437-454
Abstract The taxonomic diversity of hermatypic corals decreases with increasing latitude, which correlates with sea‐surface temperatures. However, little is known about latitudinal changes in the taxonomic diversity and biogeographic patterns of larger benthic foraminifera, although their physiological requirements are similar to those of hermatypic corals because of their symbiotic relationships with microalgae. The present study examined how the abundance and taxonomic composition of larger foraminiferal assemblages in shallow‐water reef sediments change with latitude along the Ryukyu Islands (Ryukyus), which are located near the northern limit of coral‐reef distributions in the western Pacific Ocean. Three islands from different latitudes in the Ryukyus were selected to investigate latitudinal changes in larger foraminiferal assemblages: Ishigaki Island (24°20′N, 124°10′E), Kudaka Island (26°09′N, 127°54′E) and Tane‐ga‐shima Island (30°20′N, 131°E). Four sediment samples were taken at each of three topographic sites (beach, shallow lagoon and reef crest) on the reef flat of each island. Foraminiferal tests of a 2.0‐ to 0.5‐mm size fraction were selected, identified and counted. The variations in foraminiferal abundance in reef sediments from three latitudinally different islands exhibit two contrasting trends along reef flats: a shoreward decrease on Ishigaki and Tane‐ga‐shima Islands and a shoreward increase on Kudaka Island. A total of 25, 24 and 13 foraminiferal taxa were identified in Ishigaki, Kudaka and Tane‐ga‐shima Islands, respectively. Baculogypsina sphaerulata, Neorotalia calcar and Amphistegina spp. were dominant (i.e. >3% of foraminiferal assemblages) in the three islands. Calcarina gaudichaudii and Calcarina hispida were common on Ishigaki and Kudaka Islands but were absent on Tane‐ga‐shima Island. Larger foraminiferal assemblages from three different reef‐flat environments on Ishigaki Island can be distinguished, whereas those from the three environments on Kudaka and Tane‐ga‐shima Islands are similar in composition. These latitudinal changes in larger foraminiferal assemblages in reef sediments may possibly be caused by variations in the topography of reef flats, distributions and standing crops of living foraminifers on reef flats, and the northern limit of some calcarinid species in the northern Ryukyus.  相似文献   
93.
Chlorophylla concentrations (Chla) of size-fractionated phytoplankton samples were measured in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska during the summer of 1986. Among samples collected in the upper 100 m (total of 210 samples), 207 samples were dominated by micro- (>10 m) or picoplankton (<2 m) and only three samples were represented by nanoplankton (2–10 m). These 207 samples were classified based on the total Chla content into three types: Type H (>1.0 g l–1), Type M (0.5–1.0 g l–1), and Type L (<0.5 g l–1). These types further divided into two subtypes (-p and-m), depending upon dominancy of pico (-p) and microplankton (-m). The phytoplankton community was represented by Type L-p in the Gulf of Alaska, where 80% of the samples fell into this type. It was represented by Type M-p in the western North Pacific and the Oceanic Domain in the Bering Sea, where 53 and 41% of samples were identified as this type, respectively. In the Middle Domain of the Bering Sea, 68% of samples collected below the nitracline was Type H-m, which indicates blooms of microplanton. This type was also observed in the neritic waters near the Aleutian Islands. These types described above are consistent with a general trend that an increase in phytoplankton abundance is attributed to the growth of microplankton. An unusual type occurred above the nitracline of the Middle Domain, where microplankton prevailed, although the total Chla was less (Type L-m). This type represents a feature of late phase of an ice edge bloom. Another unusual type was found mainly in the Outer Domain of the Bering Sea, where the total Chla was high and picoplankton prevailed (Type H-p). The predominance of picoplankton seems to result from the heavy grazing intensity of large calanoid copepods upon microplankton but not upon picoplankton  相似文献   
94.
To verify the actual usefulness of time-dependent tracer dating techniques in the ocean, we simultaneously obtained two cross sections of sulfur hexafluoride (SF6) and chlrofluoromethanes (CFC-11, trichlorofluoromethane; CFC-12, dichloro-difluromethane; CFC-113, trichlorotrifluoroethane) in the western North Pacific in 1998. The vertical distribution patterns of SF6 and CFC-113 were similar in shape to those of CFC-11 and CFC-12. Maximum penetration depths of SF6 and CFC-113 remained around 800 m in the subpolar region and 400 m in the tropical region, while the maximum penetration depths of CFC-11 and CFC-12 were still found below 1000 m depth. We also found all maximum contents of these tracers around 26.6−26.8σθ with a gradual decrease southward. This suggested that a new subsurface water mass in the subpolar region spread out over the entire North Pacific, which agrees closely with previous studies based on the salinity minimum. Moreover, we compared the tracer ages (the elapsed period of a water mass from when the water mass left from the ocean surface) using ten time-dependent tracer dating techniques, CFC-11, CFC-12, CFC-113, SF6, CFC-11/CFC-12, CFC-113/CFC-11, CFC-113/CFC-12, SF6/CFC-11, SF6/CFC-12 and SF6/CFC-113. This quantitative evaluation of multiple tracer dating techniques in the ocean was the first confirmation of its usefulness based on the observational data on the ocean basin-wide scale. We conclude that SF6/CFC-11, SF6/CFC-12, SF6/CFC-113 and SF6 dating techniques would be the most promising tools for determining the age of water mass not only just for the past several decades but for the future, too. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
95.
Underwater observations of infaunal amphiurid ophiuroids were made at a depth of about 480 m in Suruga Bay, central Japan, using a free-fall system which consists of time-lapse stereo-photography units and current meters. The megabenthos fauna was characterized by the dominance of infaunal echinoderms; in particular, amphiurid ophiuroids were numerically dominant. The density and biomass of the amphiurids were 170 m–2 and 37 g m–2, respectively. They buried their discs in the sediment and extended their arm tips out of the sediment surface. They protruded 2.2 arms per individual on the average. Strong bottom currents were observed, and the average velocity was 12 cm sec–1 at 4 m above the sea floor. No arm tip was observed to be raised vertically into the water column for suspension feeding utilizing the bottom current, and amphiurids were considered to be primarily a surface deposit feeder at the present site.  相似文献   
96.
Cell densities of phycoerythrin-fluorescing cyanobacteria and other chlorophyll-fluorescing picophytoplankton in the 0.2–2.0 µm size fraction were investigated, using an epifluorescence microscope, in the western North Pacific Ocean (36.5–44.0 °N, 155.0°E) in the summer of 1989. Cyanobacteria were most abundant in the surface of the subtropical water (36.5–38.0°N) and less in the northern sea area (39.5–44.0°N). The cell density of other picophytoplankton was, however, high in the northern part and low in the subtropical water. Results showed that algae other than cyanobacteria may significantly contribute to the picophytoplankton community under the low water temperature conditions of open waters. Chlorophylla concentration represented well the abundance of picophytoplankton other than cyanobacteria, but had no significant correlation with the cyanobacteria cell density. Chlorophylla-based data must be interpreted with caution, since the abundances of cyanobacteria were often considerably different even though the chlorophylla concentrations were the same level.  相似文献   
97.
Eight-year observation results of DIC from 1996 to 2003 in the Oyashio region have been analyzed to obtain a climatological view of its seasonal variation and interannual variation. Data of DIC obtained by several institutes are synthesized to give a dataset with an uncertainty lower than 5 μmol/kg. The obtained climatology of NDIC seasonal variation in the Oyashio mixed layer shows a seasonal amplitude of 176 μmol/kg, with a maximum in January and a minimum in September. These features closely resemble those observed in the southern half of the western subarctic North Pacific (WSNP) including Station KNOT, although the timing of the NDIC maximum is slightly advanced in the case of the Oyashio. Analysis using a quasi-conservative tracer Cp0 (NDIC - 106NP) shows that among 176 μmol/kg of NDIC seasonal variation, only 16 μmol/kg is attributed to hydrographic processes while the remaining 160 μmol/kg is attributed to biological processes. The Cp0 value in the Oyashio mixed layer also resembles that of the WSNP mixed layer during the months May to November, suggesting further resemblance of the Oyashio water mass to that of WSNP in terms of carbon dynamics. The present results also suggest that a single data obtained in Oyashio mixed layer contains 30 μmol/kg of potential uncertainty for the representativity of this region, which leads to a note about a need to treat with caution results obtained by a single observation in this region.  相似文献   
98.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   
99.
Size-fractionated primary productivity and chlorophylla concentration were studied at two stations in the temperate neritic water of Funka Bay, Japan, from April 1984 to May 1985. Size distributions of phytoplankton were discussed in relation to nutrient availability. In the central part of the bay, 66% of the annual primary production occurred during the spring phytoplankton bloom with 95% of the spring production being accounted for by the greater than 10µm size fraction, which was dominated by diatoms. The increase in this large fraction was enhanced at both stations when nutrient concentrations increased in the bay's upper layer. Under low nutrient concentrations during summer, small phytoplankters (<2µm) accounted for 40 to 75% (average 60%) of the total14C uptake at the central station, and from 25 to 59% (average, 45%) at the coastal station. However, a sudden nutrient enrichment at the coastal station during the summer triggered the growth of the large size fraction. These seasonal and regional changes in total14C uptake were attributed to the large size fraction, composed mainly of diatoms. From the decreases in various nutrients during diatom blooms, it was further suggested that the predominance of diatoms was determined, not only by nutrient concentrations, but also by their relative availability.Contribution No. 205 from the Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University.  相似文献   
100.
Zooplankton biomass consisting of large and small-size copepods, copepod nauplii and tintinnids were investigated over a period of one year at two stations in Funka Bay, Japan. The food requirement of zooplankton was also estimated using the method of Ikeda and Motoda. Estimated total carbon requirement of zooplankton in the coastal and central parts of the bay was equivalent to 52 and 38% of the annual primary production, respectively. These corresponded to zooplankton production of 12–13 gC·m–2·yr–1.The total carbon requirement at each station increased to 63 and 74% of the primary production during summer compared with 26 and 3% in spring or 19 and 17% in winter. The microzooplankton (copepod nauplii and tintinnids) accounted for about half of the carbon requirement from April to November.Food requirements reached 161% at the coastal station and 194% at the central station of the daily organic carbon production during September. Zooplankton may also feed on carbon sources other than living phytoplankton. This could account for the observed decrease in particulate organic carbon in a water column.Contribution No. 202 from the Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号